請簡述有限元法和有限差分法各自的優勢是什麼

時間 2021-07-02 05:13:09

1樓:匿名使用者

有限元法應該是在差分法基礎上建立起來的。

有限元法:對物理模型進行離散,網格劃分不用規則,就是各種單元可以混合使用,所以寫不出方程也可以求解。

差分法:劃分的網格是規則的,對方程進行離散化,就是用很多個差分代替微分,用線性方程組代替微分方程的一種方法。

學地質應該不用太區瞭解 基本原理,要注重分析的過程,和看懂分析結果才重要,地質畢竟也是實際的工程領域。那些理論就讓物理專業,力學專業的研究去吧。

2樓:匿名使用者

有限單元法:

優點:單元形狀任意性好,可以更精確地模擬各種複雜幾何結構;方程的係數矩陣是對稱、正定、稀疏的,有利於儲存和計算;不同媒質分介面不需要特殊處理,方程自動滿足分介面銜接條件。

缺點:用標量求解時有時會出現偽解,處理邊緣(稜邊)、尖角等情況時會出現奇異。

有限差分法:

要求模型能夠被剖分成眾多規則的單元,如四邊形,六面體等,必須對所有的邊界條件和交界條件進行演算法處理,尤其是對複雜的邊界和場域內各種介質交界的處理有著一定的困難,通常也難於實現自動處理的形式,嚴重製約了其在複雜地球物理模型中的應用,這也是它最大的不足之處。

但由於交錯網格的基本性質,該方法最大優點在於能夠非常好的處理內部介質中電磁性差異引出的磁場和電場不連續現象。目前來說,作為電磁法數值模擬方法的主導者,有限差分法正處於各向同性介質模型轉向各向異性介質模型的升級中;正處於頻率域電磁模型的模擬向時間域電磁模型模擬的空間轉換中,並藉助於並行技術求解。

什麼是有限元法和有限差分法?

3樓:哇哎西西

有限元法(finite element method)是一種高效能、常用的數值計算方法。科學計算領域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化後,可以編制程式,使用計算機輔助求解。

有限差分方法(finite difference method)一種求偏微分(或常微分)方程和方程組定解問題的數值解的方法,簡稱差分方法。

4樓:qq的勾k先生

有限差分方法具有簡單、靈活以及通用性強等特點,容易在計算機上實現,有限差分方法簡稱差分方法,是一種求偏微分(或常微分)方程和方程組定解問題的數值解的方法。

有限元法是一種數值計算方法,在科學計算領域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化後,可以編制程式,使用計算機輔助求解。

5樓:匿名使用者

有限差分法

finite difference method微分方程和積分微分方程數值解的方法。基本思想是把連續的定解區域用有限個離散點構成的網格來代替, 這些離散點稱作網格的節點;把連續定解區域上的連續變數的函式用在網格上定義的離散變數函式來近似;把原方程和定解條件中的微商用差商來近似, 積分用積分和來近似,於是原微分方程和定解條件就近似地代之以代數方程組,即有限差分方程組 , 解此方程組就可以得到原問題在離散點上的近似解。然後再利用插值方法便可以從離散解得到定解問題在整個區域上的近似解。

有限差分法的主要內容包括:如何根據問題的特點將定解區域作網格剖分;如何把原微分方程離散化為差分方程組以及如何解此代數方程組。此外為了保證計算過程的可行和計算結果的正確,還需從理論上分析差分方程組的性態,包括解的唯一性、存在性和差分格式的相容性、收斂性和穩定性。

對於一個微分方程建立的各種差分格式,為了有實用意義,一個基本要求是它們能夠任意逼近微分方程,這就是相容性要求。另外,一個差分格式是否有用,最終要看差分方程的精確解能否任意逼近微分方程的解,這就是收斂性的概念。此外,還有一個重要的概念必須考慮,即差分格式的穩定性。

因為差分格式的計算過程是逐層推進的,在計算第n+1層的近似值時要用到第n層的近似值 ,直到與初始值有關。前面各層若有舍入誤差,必然影響到後面各層的值,如果誤差的影響越來越大,以致差分格式的精確解的面貌完全被掩蓋,這種格式是不穩定的,相反如果誤差的傳播是可以控制的,就認為格式是穩定的。只有在這種情形,差分格式在實際計算中的近似解才可能任意逼近差分方程的精確解。

關於差分格式的構造一般有以下3種方法。最常用的方法是數值微分法,比如用差商代替微商等。另一方法叫積分插值法,因為在實際問題中得出的微分方程常常反映物理上的某種守恆原理,一般可以通過積分形式來表示。

此外還可以用待定係數法構造一些精度較高的差分格式。

6樓:匿名使用者

有限元法,有限差分法和有限體積法的區別

有限差分方法(fdm)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以taylor級數等方法,把控制方程中的導數用網格節點上的函式值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。

該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。  對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分的空間形式來考慮,可分為中心格式和逆風格式。

考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。目前常見的差分格式,主要是上述幾種形式的組合,不同的組合構成不同的差分格式。差分方法主要適用於有結構網格,網格的步長一般根據實際地形的情況和柯朗穩定條件來決定。

構造差分的方法有多種形式,目前主要採用的是泰勒級數方法。其基本的差分表示式主要有三種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。

通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函式的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函式組成的線性表示式,藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函式和插值函式形式,便構成不同的有限元方法。有限元方法最早應用於結構力學,後來隨著計算機的發展慢慢用於流體力學的數值模擬。

在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連線的單元,在每個單元內選擇基函式,用單元基函式的線形組合來逼近單元中的真解,整個計算域上總體的基函式可以看為由每個單元基函式組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成。在河道數值模擬中,常見的有限元計算方法是由變分法和加權餘量法發展而來的里茲法和伽遼金法、最小二乘法等。根據所採用的權函式和插值函式的不同,有限元方法也分為多種計算格式。

從權函式的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函式的精度來劃分,又分為線性插值函式和高次插值函式等。不同的組合同樣構成不同的有限元計算格式。對於權函式,伽遼金(galerkin)法是將權函式取為逼近函式中的基函式;最小二乘法是令權函式等於餘量本身,而內積的極小值則為對代求係數的平方誤差最小;在配置法中,先在計算域內選取n個配置點。

令近似解在選定的n個配置點上嚴格滿足微分方程,即在配置點上令方程餘量為0。插值函式一般由不同次冪的多項式組成,但也有采用三角函式或指數函式組成的乘積表示,但最常用的多項式插值函式。有限元插值函式分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(hermite)多項式插值。

單元座標有笛卡爾直角座標系和無因次自然座標,有對稱和不對稱等。常採用的無因次座標是一種區域性座標系,它的定義取決於單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比。在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣。

對於二維三角形和四邊形電源單元,常採用的插值函式為有lagrange插值直角座標系中的線性插值函式及二階或更高階插值函式、面積座標系中的線性插值函式、二階或更高階插值函式等。

對於有限元方法,其基本思路和解題步驟可歸納為

(1)建立積分方程,根據變分原理或方程餘量與權函式正交化原理,建立與微分方程初邊值問題等價的積分表示式,這是有限元法的出發點。

(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連線、不重疊的單元。區域單元劃分是採用有限元方法的前期準備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關係之外,還要表示節點的位置座標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值。

(3)確定單元基函式,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條件的插值函式作為單元基函式。有限元方法中的基函式是在單元中選取的,由於各單元具有規則的幾何形狀,在選取基函式時可遵循一定的法則。

(4)單元分析:將各個單元中的求解函式用單元基函式的線性組合表示式進行逼近;再將近似函式代入積分方程,並對單元區域進行積分,可獲得含有待定係數(即單元中各節點的引數值)的代數方程組,稱為單元有限元方程。

(5)總體合成:在得出單元有限元方程之後,將區域中所有單元有限元方程按一定法則進行累加,形成總體有限元方程。

(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(狄裡克雷邊界條件 )、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件)。對於自然邊界條件,一般在積分表示式中可自動得到滿足。

對於本質邊界條件和混合邊界條件,需按一定法則對總體有限元方程進行修正滿足。

(7)解有限元方程:根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉方程組,採用適當的數值計算方法求解,可求得各節點的函式值。

有限體積法(finite volume method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重複的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。

其中的未知數是網格點上的因變數的數值。為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分佈的分佈剖面。從積分割槽域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用區域性近似的離散方法。

簡言之,子區域法屬於有限體積發的基本方法。

有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控制體積中的守恆原理一樣。限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。

這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆;而有限體積法即使在粗網格情況下,也顯示出準確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。

有限單元法必須假定值在網格點之間的變化規律(既插值函式),並將其作為近似解。有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分佈,這又與有限單元法相類似。

在有限體積法中,插值函式只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函式;如果需要的話,可以對微分方程中不同的項採取不同的插值函式。

有限元受力分析

有限元分析軟體有四大公司。ansys只是其中一種。其他的還有catia v5,hyperworks,這兩種比較直觀可以有多種求解器,建模的匯入也很快。比較直觀。易於入手。另外,對於非線性分析比較在行的軟體有abaqus,nastran,samcef。如果是biom canique,先做建模,用cat...

做有限元分析什麼軟體最專業,請問有限元分析用哪個軟體最好?

ansys ansys軟體是融結構 流體 電場 磁場 聲場分析於一體的大型通用有限元分析軟體。由世界上最大的有限元分析軟體公司之一的美國ansys開發,它能與多數cad軟體介面,實現資料的共享和交換,如pro engineer,nastran,alogor,i deas,autocad等,是現代產品...

壓力容器有限元分析,常用的有限元分析軟體有什麼?

對壓力容器進行有限元分析,是解決壓力容器理論計算強度的一種有效途徑。壓力容器,英文 pressure vessel,是指盛裝氣體或者液體,承載一定壓力的密閉裝置。1 壓力容器製造工序一般可以分為 原材料驗收工序 劃線工序 切割工序 除鏽工序 機加工 含刨邊等 工序 滾制工序 組對工序 焊接工序 產品...