一道高中數列題1 1 16 ,一道高中數列題 1 1 4 1 9 1 16 1 N 2 數列求和。

時間 2021-05-05 23:19:55

1樓:匿名使用者

π^2/6

這個求和問題被稱為巴塞爾問題,2023年(清軍入關那一年)由義大利數學家蒙哥利提出,2023年(雍正逝世、乾隆登基那一年)由神一樣的尤拉首先解決。這個等式的證明方法挺多的,詳參http://www.

2樓:溥樂禕

1+1/4+1/9.+1/n^2

=1+1/2*2+1/3*3+...1/n*n<1+1/1*2+1/2*3.+1/(n-1)n=1+1-(1/2)+(1/2)-(1/3).-1/n=2-1/n

所以原式成立

: 1+1/4+1/9+1/16+…1/n^2=?數列求和。。 20

3樓:徭童欣

等於pi的2次方除以6

4樓:拿

這用到無窮級數    在下面這本書的250頁   到252頁

數列∑1/n^2 求和 15

5樓:匿名使用者

n^2 = n*(n+1)-n

= 1/3*[n(n+1)(n+2) - (n-1)n(n+1)] - n

即:1^2 = 1/3*(1*2*3-0*1*2)-1

2^2 = 1/3*(2*3*4-1*2*3)-2

3^2 - 1/3*(3*4*5-2*3*4)-3

……………………

求和即:

1/3*(1*2*3-0*1*2 + 2*3*4-1*2*3 + 3*4*5-2*3*4……)-(1+2+3+……)

= n(n+1)(n+2)/3 - n(n+1)/2

因此有:

1^2+2^2+3^2+...+n^2= n(n+1)(2n+1)/6

證明一個與正整數n有關的命題,有如下步驟:

(1)證明當n取第一個值時命題成立;

(2)假設當n=k(k≥n的第一個值,k為自然數)時命題成立,證明當n=k+1時命題也成立。

例:求證:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5

證明:當n=1時,有:

1×2×3×4 = 24 = 2×3×4×5/5

假設命題在n=k時成立,於是:

1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5

則當n=k+1時有:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)

= 1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)

= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)

= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)

= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1時原等式仍然成立,歸納得證。

6樓:陳

這個就是zeta(2),答案是π^2 /6

正弦函式無窮乘積結合taylor或者fourier級數都可以證明

7樓:火天雲野

方法一:

將sinx按泰勒級數:

sinx=x-x^3/3!+x^5/5!-x^7/7!+ …

於是sinx/x=1-x^2/3!+x^4/5!-x^6/7!+ …

令y=x^2,有sin√y/√y=1-y/3!+y^2/5!-y^3/7!+ …

而方程sinx=0的根為0,±π,±2π,…

故方程sin√y/√y=0的根為π²,(2π)²,…

即1-y/3!+y^2/5!-y^3/7!+…=0的根為π²,(2π)²,…

由韋達定理,常數項為1時,根的倒數和=一次項係數的相反數

即1/π²+1/(2π)²+…=1/3!

故1+1/2²+1/3²+ … =π²/6

方法二:

複變函式的留數問題,令f(z)=1/z^2*cos(πz)/sin(πz).將此函式在以(-n-1/2,-n),(-n-1/2,n),(n+1/2,-n),(n+1/2,n)為頂點的矩形封閉路徑上積分,通過各項相消,易知此積分為0.同時由留數定理,此積分=1/2πi*(-π/3+2/π*(1/1^2+1/2^2+1/3^2+...

+1/n^2)),兩邊取極限得 π/3-2/π*∑1/n^2=0,所以∑1/n^2=π²/6

8樓:沙青亦

沒有這個數列沒法求和 只可以放縮

連數學家都不可以把它求出來

不過我可以幫你把他縮小或放大一點點

9樓:匿名使用者

六分之pi平方

pi^2/6

10樓:匿名使用者

1-(1/2)ⁿ 不知道你們回答是什麼玩意,跟題一點都不沾邊還有100+贊,搞笑

急求:1+1/4+1/9+1/16+…1/n^2=?(求和這樣的數列求和有公式嗎) 10

11樓:

f=0for i=1 to n

f=f+1/(i^2)

next i

12樓:匿名使用者

vb:dim i%,n%,f as doublen=val(inputbox("輸入n"))f=0

for i=1 to n

f=f+1/(i^2)

next i

msgbox(f)

vc:#include

main()

printf("%f",c);

scanf("%f,c);//檢視結果

}如果你看不懂……sorry,我無能為力

數列求和 i的平方相加(1+4+9+16+.......n的平方) 求sn 我要過程,

13樓:雨說情感

1²+2²+3²+...+n²=n(n+1)(2n+1)/6證明如下:排列組合法)

由於因此我們有

等於由於

於是我們有

擴充套件資料1、一般的數列求和問題應從通項公式入手,若無通項公式,應先求通項公式,然後根據通項公式的特點選擇合適的方法求和。

2、解決非等差、等比數列的求和問題主要有兩種方法,一為將非等差、等比數列問題轉化為等差、等比數列問題;二為不能轉化為等差、等比數列的問題,可以考慮利用倒序相加法、錯位相減法、裂項法、分組求和法等進行求和。

3、對於等比數列的求和問題,要注意判斷公比是否為1,然後進行分類討論.等差數列的求和公式有多種形式,要注意根據已知條件選擇合適的求和公式。

14樓:匿名使用者

1²+2²+3²+...+n²=n(n+1)(2n+1)/6

證明:(n+1)³=n³+3n²+3n+1

(n+1)³-n³=3n²+3n+1

n³-(n-1)³=3(n-1)²+3(n-1)+1

...3³-2³=3*2²+3*2+1

2³-1³=3*1²+3*1+1

兩邊分別相加得

(n+1)³-1³=3*(1²+2²+...+n²)+3(1+2+...+n)+1*n

(n³+3n²+3n)-3n(n+1)/2-n=3sn

3sn=n(2n²+3n+1)/2=n(n+1)(2n+1)/2

sn=n(n+1)(2n+1)/6

擴充套件資

公式法等差數列求和公式:

(首項+末項)×項數/2

舉例:1+2+3+4+5+6+7+8+9=(1+9)×9/2=45

等比數列求和公式:

差比數列求和公式:

a:等差數列首項

d:等差數列公差

e:等比數列首項

q:等比數列公比

其他錯位相減法

適用題型:適用於通項公式為等差的一次函式乘以等比的數列形式(等差等比數列相乘)

、分別是等差數列和等比數列.

例如:______①

tn=上述式子/(1-q)

此外.①式可變形為

sn為的前n項和.

此形式更理解也好記

倒序相加法

這是推導等差數列的前n項和公式時所用的方法,就是將一個數列倒過來排列(反序),再把它與原數列相加,就可以得到n個(a1+an)

sn =a1+ a2+ a3+...... +an

sn =an+ an-1+an-2...... +a1

上下相加得sn=(a1+an)n/2

分組法有一類數列,既不是等差數列,也不是等比數列,若將這類數列適當拆開,可分為幾個等差、等比或常見的數列,然後分別求和,再將其合併即可.

例如:an=2n+n-1,可看做是2n與n-1的和

sn=a1+a2+...+an

=2+0+22+1+23+2+...+2n+n-1

=(2+22+...+2n)+(0+1+...+n-1)

=2(2n-1)/(2-1)+(0+n-1)n/2

=2n+1+n(n-1)/2-2

15樓:匿名使用者

解:採用數學歸納法可以計算

sn=1²+2²+3²+4²+...+n²

由於n²=n(n+1)-n

即1²=1×(1+1)-1=1×2-1

2²=2×(2+1)-2=2×3-2

3²=3×(3+1)-3=3×4-3

4²=4×(4+1)-4=4×5-4

.....

所以sn=1²+2²+3²+4²+...+n²

=1×2-1+2×3-2+3×4-3+4×5-4+...+n(n+1)-n

=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)

以為n(n+1)=【n(n+1)(n+2)-(n-1)n(n+1)】/3

所以1×2+2×3+3×4+4×5+...+n(n-1)

=(1×2×3-0×1×2)/3+(2×3×4-1×2×3)/3+(3×4×5-2×3×4)/3+(4×5×6-3×4×5)/3+...+【n(n+1)(n+2)-(n-1)n(n+1)】/3

=【1×2×3-0+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+...+n(n+1)(n+2)-(n-1)n(n+1)】/3

=【n(n+1)(n+2)】/3

所以sn=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)

=【n(n+1)(n+2)】/3-【n(n+1)】/2

=【2n(n+1)(n+2)】/6-【3n(n+1)】/6

=【2n(n+1)(n+2)-3n(n+1)】/6

=【n(n+1)(2n+4-3)】/6

=【n(n+1)(2n+1)】/6

16樓:該死大本營

設:s=12+22+32+…+n2

另設:s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步設題是解題的關鍵,一般人不會這麼去設想。有了此步設題,第一:

s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=s,(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以為(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 s1=2s+n3+2n(1+2+3+…+n)………………………………………………..(1) 第二:s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以寫為:

s1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:

22+42+62…+(2n)2=22(12+22+32+…+n2)=4s……………………………………..(2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2

= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n

=4s-4(1+2+3+…+n)+n……………………………………………………………..(3) 由(2)+ (3)得:s1=8s-4(1+2+3+…+n)+n…………………………………………..

(4) 由(1)與(4)得:2s+ n3+2n(1+2+3+…+n) =8s-4(1+2+3+…+n)+n 即:6s= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1) = n(n+1)(2n+1) s= n(n+1)(2n+1)/ 6

亦即:s=12+22+32+…+n2= n(n+1)(2n+1)/6……………………………………(5)

一道高中數列題,幫幫忙,求問一道高中數列題,幫幫忙,線上等

n 3,a3 5,a4 6,a5 9,a6 10,a7 13,a8 14 總上通項 an 2n 3 2 1 2 1 n a n 2 a n 4 a n 1 a n 1 4 a n 2 a n 1 an a n 1 an a n 1 a n 1 a n 2 a2 a1 2 1 1 為公差等於1的等差數...

一道數列題,謝謝啊,一道高中數列題,各路高人幫幫忙啊 謝謝誒

解答 設等差數列的首項 a,公比 q,則a1 a,a2 a da,3 a 2d,a2010 a 2009d,s1 a,s2010 2010a 2010 2009d,s2010 s1 2009a 1005 2009d 2009 a 1005d 1,a 1005d 1 2009,而s2011 s2010...

一道高中數學等比數列題,一道高中數學等比數列題?

文庫精選 內容來自使用者 袁會芳 課時跟蹤檢測 三十 等比數列 一抓基礎,多練小題做到眼疾手快 1 2019 如東中學檢測 已知等比數列的公比q 則 解析 2.答案 2 2 2018 鹽城期中 在等比數列中,已知a1 a2 1,a3 a4 2,則a9 a10 解析 設等比數列的公比為q,則a3 a4...